Keyword Search Result

[Keyword] array antenna(166hit)

81-100hit(166hit)

  • A Novel Adaptive Linearization Technique for a Balanced-Amplifier Array

    Takana KAHO  Yo YAMAGUCHI  Tadao NAKAGAWA  Katsuhiko ARAKI  Kiyomichi ARAKI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E89-C No:10
      Page(s):
    1448-1453

    We propose a novel adaptive linearization technique for a balanced-amplifier array. The technique uses the specific intermodulation distortions (IMDs) at the output ports in the array. The detected IMD power level can be used to optimize the linearizer's characteristics. Because the design does not need as many power detectors and carrier cancel loops as it does amplifiers, we were able to successfully miniaturize the array-antenna system. This paper describes the principles, verified both experimentally and mathematically for a 4-port amplifier array.

  • Wave Analysis of the Aperture Field Distribution in Probe-Fed Radial Line Planar Antennas

    Nobuyasu TAKEMURA  Hiroaki MIYASHITA  Shigeru MAKINO  

     
    PAPER-Antennas and Propagation

      Vol:
    E89-B No:9
      Page(s):
    2580-2587

    We propose a wave analysis method for probe-fed Radial Line Planar Antennas (RLPAs) which yields an approximate solution for the aperture field distribution and scattering by loaded probes. Damping of electric power in the radial line due to radiation by antenna elements is included. The method can accommodate the effect of all conductors, including the terminating wall, by introducing the concept of equivalent posts. We have found good correspondence between the measured and calculated values of the aperture field distribution. The proposed method is effective for general geometries of probe-fed RLPAs.

  • A Pre-FFT OFDM Adaptive Array Antenna with Eigenvector Combining Open Access

    Shinsuke HARA  Quoc Tuan TRAN  Yunjian JIA  Montree BUDSABATHON  Yoshitaka HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:8
      Page(s):
    2180-2188

    This paper proposes a novel pre-FFT type OFDM adaptive array antenna called "Eigenvector Combining." The eigenvector combining array antenna is a realization of a post-FFT type OFDM adaptive array antenna through a pre-FFT signal processing, so it can achieve excellent performance with less computational complexity and shorter training symbols. Numerical results demonstrate that the proposed eigenvector combining array antenna shows excellent bit error rate performance close to the lower bound just with 2 OFDM symbol-long training symbols.

  • Performance of a Base Station Feedback-Type Adaptive Array Antenna with Limited Number of Feedback Bits

    Jeongkeun CHOI  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:6
      Page(s):
    1793-1798

    Feedback-type Adaptive Array Antenna has been proposed for frequency division duplexed (FDD) system, where the mobile station (MS) measures channel characteristics and sends those back to the base station (BS). Using a higher number of feed-back bits provides better performance. However it wastes channel capacity of the up-link. On the other hand, error in feedback signals transmission causes significant performance degradation. To solve these problems, this paper proposes a method that the MS sends back the difference between the optimum weights calculated at the MS and weights which are currently used at the BS. Bit error rate performance of the system is shown under a realistic propagation condition.

  • Multi-Stage RLS OFDM Adaptive Array Antenna with Short Pilot Symbols

    Takeo FUJII  Yukihiro KAMIYA  Yasuo SUZUKI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:5
      Page(s):
    1589-1597

    Post-FFT type orthogonal frequency division multiplexing (OFDM) adaptive array antennas can reduce the co-channel interference with a few antenna elements under multi-path fading environments. However, the Post-FFT type OFDM adaptive array antennas require a lot of pilot symbols in order to determine the optimal weights in each subcarrier. In packet communication systems, since the data are transmitted burst by burst, the ratio of the effective data in a channel decreases when the long pilot symbols are used. Recursive least squares (RLS) algorithm is one of the weight optimization algorithm with fast convergence based on minimum mean square errors (MMSE). However, the optimal weight determination with a few pilot symbols is difficult. Therefore, in this paper, we propose a novel multi-stage RLS OFDM adaptive array antenna for realizing weight determination with a few pilot symbols. In the proposed method, the weights are optimized by using a multiple stage structure with the stored pilot symbols. Here, the initial weights and the initial inverse matrix of correlation matrix are decided by the results of the weight determination in the adjacent subcarriers of the previous stage. As a result, the weight determination with a few pilot symbols can be achieved.

  • Performance Evaluation for RF-Combining Diversity Antenna Configured with Variable Capacitors

    Hiroya TANAKA  Jun-ichi TAKADA  Ichirou IDA  Yasuyuki OISHI  

     
    PAPER

      Vol:
    E89-C No:4
      Page(s):
    488-494

    An RF adaptive array antenna (RF-AAA) configured with variable capacitors is proposed. This antenna system can control the power combining ratio and phase value of received signals. In this paper, we focus on the diversity effects of RF-AAA. First, we show the design methodology of the combiner circuit to realize the effective combining. Second, the perturbation method and the steepest gradient method are compared for the optimization algorithms to provide fast convergence and suboptimum solutions among the variable circuit constants. Finally, in simulation, we show the RF-AAA can achieve diversity antenna gains of 7.7 dB, 10.9 dB and 12.6 dB for 2-branch, 3-branch and 4-branch configuration, respectively, which have higher performance than the selection combining.

  • Performance of Feedback-Type Adaptive Array Antenna in FDD System with Rake Receiver

    Mona SHOKAIR  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:2
      Page(s):
    539-544

    The performance of a feedback-type adaptive array antenna (AAA) system placed only at a base station (BS) in an FDD/DS-CDMA system remains insufficiently clear. We evaluate the performance of this system by considering the effect of a rake receiver, spacing distance between antennas, the maximum Doppler frequency (fd), and control delay time (Td) on BER performance. In this system, the mobile station (MS) determines optimum weights of antenna elements and sends them back to BS as feedback information. We assume that the optimum weights are not quantized. Thereby, we estimate the performance degradation of 3GPP transmit diversity system, where the feedback information is quantized using a few bits. Computer simulation results show that the rake receiver achieves better BER performance because of the time diversity effect with rake receiver. The AAA with a wide antenna spacing gives high diversity gain for the received signals. For a high value of fd Td, BER performance becomes worse because weighting factors cannot follow the changing speed of channel characteristics. The degradation in performance of a 3GPP system is clarified.

  • A Feedback Type Adaptive Array Antenna with One Bit Feedback Information and Adaptive Update Size in FDD System

    Mona SHOKAIR  Yoshihiko AKAIWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4074-4080

    The purpose of this paper is to improve a feedback-type adaptive array antenna (AAA) with feedback information quantized by one bit which was presented recently on TDMA system by an author of this paper. The improvement is made by using adaptive, instead of constant, update size of adaptive antenna weights control. Computer simulation results show that the performance of this system is improved to be almost equivalent to the performance of a system without quantization of the feedback information for wide range of fading speed. The results include the effect of control delay time and the maximum Doppler frequency under flat fading and frequency-selective fading.

  • Symbol Perforation Reduction Schemes for Orthogonal Code Hopping Multiplexing

    Jae Hoon CHUNG  Suwon PARK  Dan Keun SUNG  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4107-4111

    Our previously proposed orthogonal code hopping multiplexing (OCHM) [1],[2] scheme is designed to accommodate a large number of bursty downlink users. However, it may undergo link quality degradation due to symbol perforations occurring when all code-collision symbol values are not identical. In this letter, a group-level random codeword hopping-pattern allocation (GRCHA) scheme is proposed to produce fewer symbol perforations than the previous symbol-by-symbol random codeword hopping (SRCH) of OCHM [1]. The proposed GRCHA scheme combined with the spatial filtering capability of switched-beam array antennas (SBAA) is expected to significantly reduce the symbol perforation probability in the OCHM scheme, and inter-beam softer handoff is applied to cope with high symbol perforation probability for users in overlapping beam areas of SBAA. The performance is evaluated by theoretical analysis and simulation in terms of the average symbol perforation probability. The proposed GRCHA scheme yields better performance than the SRCH scheme and the dedicated codeword allocation scheme, and the diversity gain of inter-beam softer handoff mitigates the effect of high symbol perforation probability for users in the overlapping beam areas.

  • An SDMA Approach with Preamble Subcarrier Assignment for IEEE802.11a-Based OFDM Signals

    Yunjian JIA  Shinsuke HARA  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E88-B No:10
      Page(s):
    4133-4137

    In this letter, we present a space division multiple access (SDMA) approach for IEEE802.11a-based system employing pre-fast Fourier transform (FFT) adaptive array antenna (AAA) at base station (BS). As the core idea, we propose a preamble subcarrier assignment method to generate different preambles for different users using the same signal burst structure defined by IEEE802.11a, by which BS can effectively distinguish each user from other users and accurately estimate the channel impulse response (CIR) for each user. In this way, SDMA can be easily realized with no significant change in IEEE802.11a-based system. The performance of the proposed SDMA system is evaluated by computer simulation using a realistic spatio-temporal indoor wireless channel model.

  • Simplification of an Array Antenna by Reducing the Fed Elements

    Tadashi TAKANO  Noriyuki KAMO  Akira SUGAWARA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:9
      Page(s):
    3811-3814

    This paper proposes the design to reduce the number of fed elements by replacing with parasitic elements in an array antenna. The study depends on the analysis of electromagnetic wave fields in consideration of the coupling between the half-wavelength dipoles. The case of 2 fed elements and 2 parasitic elements is considered as a unit cell to form the total array. After optimizing the element arrangement, the antenna gain can match that of the equivalent 4-fed element case. Feeding networks in a high power radiating system are analyzed in terms of the length and matching of feed lines, and the arrangement of amplifiers.

  • Novel Array Antenna Assisted Adaptive Modulation Scheme for Fast Fading Channel

    Tomotaka WADA  Minoru OKADA  Heiichi YAMAMOTO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:8
      Page(s):
    3383-3392

    In this paper, we propose a novel array antenna-assisted adaptive modulation scheme for fast fading environments. Although adaptive modulation is an efficient technique capable of establishing high bit-rate digital transmission in a multi-path fading environment, it is sensitive to the fast time variation of the channel because of difficulties in tracking the channel state. To resolve this problem, an array antenna-based Doppler spread compensator was applied to the adaptive modulation scheme. Computer simulation results indicated that the proposed scheme can markedly improve the bit error rate and throughput performance for the region in which the maximum Doppler frequency normalized by the packet length is up to 0.1.

  • Improvement on Virtual Subcarrier Assignment (VISA) for Spatial Filtering of OFDM Signals: Multiple Subcarrier Puncturing

    Yunjian JIA  Shinsuke HARA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E88-B No:6
      Page(s):
    2516-2524

    We have proposed a novel spatial filtering technique named "VIrtual Subcarrier Assignment (VISA)" for orthogonal frequency division multiplexing (OFDM) signals, which enables the transceiver equipped with an adaptive array antenna (AAA) to selectively receive or reject OFDM signals through coloring them with different virtual subcarrier positions in their frequency spectra. In this paper, we develop the VISA to use multiple virtual subcarrier assignment, which assigns a different combination of multiple virtual subcarrier positions in the frequency spectrum to each OFDM signal. Furthermore, we present two kinds of recursive least square (RLS)-based array weight control methods to support the VISA with multiple subcarrier puncturing in an IEEE802.11a-based system and evaluate the link-level performance in typical indoor wireless environments by computer simulations.

  • Convergence of SOR in MoM Analysis of Array Antenna

    Qiang CHEN  Qiaowei YUAN  Kunio SAWAYA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:5
      Page(s):
    2220-2223

    Convergence of the iterative method based on the successive overrelaxation (SOR) method is investigated to solve the matrix equation in the moment analysis of array antennas. It is found this method can be applied to the sub domain method of moments with fast convergence if the grouping technique is applied and the over-relaxation parameter is properly selected, and the computation time for solving the matrix equation can be reduced to be almost proportional to the second power of the number of unknowns.

  • Enhancement of Data Throughput in the AMC-Employed DS-CDMA Systems through Suppression of Channel Frequency Selectivity by a MTMR Antenna System

    Jaewan KIM  Seiichi SAMPEI  Norihiko MORINAGA  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:4
      Page(s):
    1622-1631

    In this paper, a new algorithm for MTMR adaptive array antenna (AAA) system combined with analog-type transmit power control (TPC) is proposed for DS-CDMA systems in order to employ high level modulation schemes like 64 QAM in wireless multimedia services. A conventional AAA system considering the strongest path as a target path cannot work effectively when angular dispersion between the strongest path and other delayed paths is large, that is, beam selectivity is so small due to severe frequency selective multipath fading. So, in order to solve such a beam selectivity problem, a beam directivity control scheme using a path manipulation technique is introduced for the BS and MS AAA combining in this paper, along with analog-type TPC. It utilizes virtual delay profiles which are modified from the measured complex delay profile and selects a desired path giving the maximum DUR with an optimized weight vector for BS and MS beamforming. We will show through computer simulation that the proposed scheme is very effective in enhancing the data throughput at the downlink of wideband DS-CDMA systems as compared with the conventional system.

  • Mutual Coupling Characteristics of Choke Loaded Patch Array Antenna

    Naobumi MICHISHITA  Hiroyuki ARAI  Yasuko KIMURA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:1
      Page(s):
    411-415

    This paper describes the choke-loaded patch array antenna for use in the IMT-2000 repeater systems. The choke structure of the 4-element array is designed by means of an electromagnetic analysis. A high front-to-back (FB) ratio is required for suppressing mutual coupling in order to stop the oscillation caused by the interference waves between a transmitting and receiving antenna. The suppression of the FB ratio by a choke is limited in the case of the 16-element array because its side lobe level is large. In this paper, we examine the effect of suppressing the mutual coupling using a binomial array.

  • Performance of Cellular CDMA Systems Using SBF and TBF Array Antennas under Multi-Cell Environment

    Hyunduk KANG  Insoo KOO  Vladimir KATKOVNIK  Kiseon KIM  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E87-A No:12
      Page(s):
    3447-3451

    In cellular systems, a code division multiple access (CDMA) technology with array antennas can significantly reduce interferences by taking advantage of the combination of spreading spectrum and spatial filtering. We investigate performance of cellular CDMA systems through adopting two types of array antennas, switched beam forming (SBF) and tracking beam forming (TBF) in the base station. Through Monte-Carlo simulations, we evaluate average bit-error-rate (BER) and outage probability of the systems under log-normal shadowing channels with multi-cell environment. When we consider 2 beams and 4 beams per sector for the SBF method, it is observed that the TBF method gives at least 10% and 30% capacity improvement over the SBF method in aspects of 10-3 BER and 1% outage probability, respectively.

  • Subcarrier Clustering in Adaptive Array Antenna for OFDM Systems in the Presence of Co-channel Interference

    Hidehiro MATSUOKA  Yong SUN  

     
    PAPER-Wireless Network System Performances

      Vol:
    E87-C No:9
      Page(s):
    1477-1484

    For future high-speed wireless communications using orthogonal frequency division multiplexing (OFDM), two major system requirements will emerge: throughput improvement and rich interference elimination. Because of its broadband nature and limited frequency allocations worldwide, interference from co-located wireless LAN's operating in the same frequency band will become a serious deployment issue. Adaptive array antenna can enhance the performance by suppressing the co-channel interference even when interference may have a large amount of multipath and also have similar received power to the desired signal. There are typically two types of adaptive array architecture for OFDM systems, whose signal processing is carried out before or after FFT (Fast Fourier Transform). In general, the pre-FFT array processing has low complexity, but in rich multipath and interference environments, the performance will deteriorate drastically. In contrast, the post-FFT array processing can provide the optimum performance even in such severe environments at the cost of complexity. Therefore, complexity-reduction techniques combined with the achievement of high system performance will be a key issue for adaptive array antenna applications. This paper proposes novel adaptive array architecture, which is a complexity-reduction technique using subcarrier clustering for post-FFT adaptive array. In the proposed scheme, plural subcarriers can be clustered into a group with the same spatial weight. Simulation results show that the proposed architecture is a promising candidate for real implementation, since it can achieve high performance with much lower complexity even in a rich multipath environment with low signal to noise plus interference ratio (SNIR).

  • Development of Mobile Broadband Satellite Access System for Ka/Ku-band Satellite Communications

    Yun-Jeong SONG  Min-Su SHIN  Byoung-Hak KIM  Ho-Jin LEE  Young-Keun CHANG  Sung-Woong RA  

     
    PAPER

      Vol:
    E87-B No:8
      Page(s):
    2152-2161

    In this paper, the design of a mobile satellite Internet access (MSIA) system and a mobile broadband satellite access system, called Mobile Broadband Interactive Satellite Multimedia Access Technology System (MoBISAT) are presented. MSIA system provides Internet service, broadcasting, and digital A/V service in both fixed and mobile environments using Ku-band geostationary earth orbit (GEO) satellite. A Ku-band two-way active phased array antenna installed on top of the transportation vehicles can enable the transmission of signals to satellite as well as signal tracking and reception. The forward link and return link are a high speed Time Division Multiplex (TDM) and TDMA transmission media, respectively, both of which carry signaling and user traffic. The MoBISAT, which is a next generation mobile broadband satellite access system, provides both Ku-band satellite TV and Ka-band high-speed Internet to the passengers and crews for land, maritime, and air vehicles. This paper addresses the main technological solutions adopted for the implementation and test results for the MSIA system and the main design features of the MoBISAT system.

  • Blind Adaptive Beamformer for Cyclostationary Sources with Application to CDMA Systems

    Teruyuki MIYAJIMA  

     
    PAPER-Spread Spectrum Technologies and Applications

      Vol:
    E87-A No:5
      Page(s):
    1258-1269

    In this paper, a simple blind algorithm for a beamforming antenna is proposed. This algorithm exploits the property of cyclostationary signals whose cyclic autocorrelation function depends on delay as well as frequency. The cost function is the mean square error between the delay product of the beamformer output and a complex exponential. Exploiting the delay greatly reduces the possibility of capturing undesired signals. Through analysis of the minima of the non-quadratic cost function, conditions to extract a single signal are derived. Application of this algorithm to code-division multiple-access systems is considered, and it is shown through simulation that the desired signal can be extracted by appropriately choosing the delay as well as the frequency.

81-100hit(166hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.